If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4a-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $
| -4(7x-5)=-15+7x | | 12x^2+5x^2=75^2 | | 5c-1=5=6c | | 5x+4-3(x+1)=9x+5 | | x^2-4x=37 | | 8(3+v)+39v=15v | | 37-7x=9 | | 67x+37=67+37 | | +5y-8=3(y-11) | | 24+12(x–5)=6(x+4)+6x | | (2x-17)^2=0 | | x12-2=-4 | | 50z^2+5z-36=0 | | b/9=-11 | | Q=2/5w-4 | | -7n-3n=10 | | 5r^2=2+9r | | 1/x+9=3/x-2 | | -159=3(6n+4)-3 | | a^2+6a=4+2a | | 3x+9-8(x+1)=2x+4 | | 5/6m=5-11/12m | | z/5=5z-12 | | y/2+14=2 | | X-(-8)=x*3 | | 24x+32-2x=20.9x+30+x-2 | | (2x-5)+(2x-5)=90 | | 10x^2-58x+72=0 | | 5-2/3x=-4 | | F(x)=3x^2+2x+7 | | 12=-5(-6x-3) | | 3/5*n=7/10 |